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P L A S M A  H E A T I N G  A T  C O N S T A N T  I M P E D A N C E  

M .  E .  G e r t s e n s h t e i n  a n d  V.  A .  P o g o s y a n  UDC 533.9 +537.52 +539.893 

It is well  known that  the p l a s m a  conductivity a depends s t rongly  on the t e m p e r a t u r e  T [1], a ~T3/2, which 
leads to breakdown in p l a s m a  matching during heating with an energy  source  and to a drop in heating efficiency.  
Constancy of impedance  fac i l i ta tes  broadband matching of an energy  source  with a t a rge t  [2, 3]. This  p a p e r  
d e m o n s t r a t e s  that  the impedance changes l i t t le  during pulsed heating of a solid p l a s m a  through propagat ion  of 
an ionizat ion wave [4]. 

We cons ide r  a solid d ie lec t r ic  be tween the two conductors  S 1 and S 2 of a t r a n s m i s s i o n  line (Fig. 1). A 
thin wi re  or  f i lm AB is within the d ie lec t r i c .  We l imit  ou r se lves  to the s imples t  case  where  the conductors  
S 1 and S 2 a r e  p l a n e - p a r a l l e l  p la tes .  A powerful  radio or  video pulse is fed into the line [5, 6], the f i lm ex-  
plodes [7, 8], and an ionizat ion wave is p ropaga ted  f rom the f i lm with the field and cu r r en t  pa t t e rn  shown in 
Fig. 2. The ionizat ion front  is p ropaga ted  to the left,  E 1 ~0 on the left  ahead of the front,  (rl =0 in t h e d i e l e c -  
t r i c ,  and G = G  2 on the r ight  behind the f ront .  The uhf field or  shor t  pulse  does not pene t ra t e  wi th in the  con-  
ducting p l a s m a  behind the ionization front  (E 2 = 0) so that  the pulsed cu r r en t  j is z e ro  eve rywhere  except for  
a thin skin l a y e r  in which energy  is deposited,  and the p ropaga t ion  of the d i scharge ,  as noted in [4], is c o m -  
ple te ly  analogous to the detonation p r o c e s s  [4, 9]. In the s y s t e m  shown in Fig. 1, p ropaga t ion  of both a b r e a k -  
down wave and an ionization wave is poss ib le  with the wave having the g r e a t e r  veloci ty  being the one p rop -  
agated [4]. 

The p ropaga t ion  of ionizat ion waves  in gases  was d iscussed  in detail  in [4] and the propaga t ion  of ioniza-  
t ion waves  was f i r s t  d i scussed  in [10, 11]. The p r e sen t  p a p e r  s tudies the fea tu res  of ionizat ion-wave p rop -  
agat ion at  condensed - s t a t e  dens i t ies .  

For  the veloci ty  D of a plane detonation wave and the specif ic  internal  energy ~ of the ma t e r i a l  behind 
the front ,  the re la t ions  [4, 9] 

D = [2(73-  t)(Slp)]ll3i (1) 
22/3 

s (7~ - -  i) 1/3 (V + i) (SIp)~I~ 7 D: = = (?~ - -  I T ( ?  + i) (2) 

a r e  valid, where  S is the flux of absorbed  energy,  e r g / ( s e c "  cm2); p is the dens i tyof  the ma te r i a l ;  T is the ef-  
fec t ive  adiabat ic  index [9]. 

For  example  [7], let  the p u l s e  energy  be 10 kJ  = l 0  i s  ergs ,  the durat ion T = 10 .8 see,  which co r re sponds  
to a power  of ~1013 W = 102o e r g / s e c ,  let  the heated sample  be a cy l inder  of radius  r 0 = 1 m m  and length 2 ram 
with the l a t e ra l  su r face  of the cyl inder  ~10 m m  2 or  ~0.1 cm 2, and S ~- 10 la W/era  2 = 1 0  21 e r g / ( s e e ,  ore2). One 
can  set  p ~1 g / c m  a fo r  a solid d ie lec t r i c .  
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The question of the effective adiabatic index is considerably more  complicated s incethe mater ia l  is not an 
ideal gas at high densit ies with multiple ionization taken into considerat ion [9]. For  rough es t imates  we set 
7= 1.33; the resul t  depends weakly on ~/as in a multiply ionized gas.  Then 

D -- i.23~ i07 cm/sec ".~ i0~cm/sec, s = i.i4. l014 cm~/sec. 

Therefore ,  the ionization front t r ave l s  a total  of 10 -2 cm = 0.1 mm during the t ime of heating. One can see 
that D ~r0 -2/3, s 0 ~r0 -4/3 for  such ta rge t s .  In the ideal gas approximation, we have for  the p r e s s u r e  

p ~ '  (y  - -  ] )  p8 = 22/3 (Y - -  ~.)i13 _113S2/3 (3) t' �9 

For  the example d iscussed above, p ~0.38 - l0 s tech.  atm. The p re s su re  of the e lectr ic  and magnetic fields 
was not taken into account in the derivat ion of Eqs. (1) and (2). Such neglect is justified in this case  because 
the p r e s s u r e  of the field is considerably  less  than the p r e s s u r e  of the mater ia l .  Therefore ,  ins tabi l i t ies typi-  
cal of p lasma confinement by a magnetic field will not appear .  

In the coordinate sys tem fixed in the propagating plane wave, the phenomenon is s ta t ionary and the re -  
fore  the complex impedance is constant  in that sys tem.  In the convers ion to the labora tory  sys tem of coord i -  
nates,  the impedance will r ema in  constant if 

D'~ ~ ~,~ ~, ~ clo) m ,.,, cT/n, (4) 

where Wm is the upper  l imiting frequency of the video pulse spect rum.  This inequality is equivalent to the 
condition 

D << c /n ,  (5) 

which is amply satisfied when S ~1014-1016 W / c m  2. The supplementary condition Dr < L, where L is a cha r -  
ac te r i s t ic  t r a n s v e r s e  dimension, is neces sa ry  for  waves of a rb i t r a ry  configuration.  For  a radio pulse, X in 
Eq. (4) co r responds  to the length of the c a r r i e r  wave. Fo r  a video pulse, Eq. (5) is amply satisfied, but for a 
radio pulse, Eq. (4) imposes  a l imitat ion on e i ther  the working frequency or  the pulse duration. The condition 
(4) is cer ta in ly  not satisfied for  l a se r  heating of a p lasma [12]. 

According to Eq. (3), p r e s s u r e  depends weakly on the degree  of ionization z and we have for  a Boltzmann 
gas 

p = n k r  = n+(i § ~ k T ,  r N i/(l § ~). 

The width of the ionization wave front is determined by the following fac tors :  the finite ionization t ime and 
the finite t ime for  exchange of energy between e lect rons  and heavy ions; e lec t ron and radiat ive thermal  con-  
ductivityl the finite thickness, of the skin l ayer .  

The maximum range for radiat ion in a i r  is 0.6 cm [9]; convers ion  yields a value of 3/~ for  the range.  
The e lectr ic  field heats the e lect rons ,  the ra t io  of e lec t ron and ion heat capacit ies  in a Boltzmann gas is equal 
to the rat io of pa r t i c le  number  and z so that the e lec t ron t empera tu re  is insignificantly higher than the final 
t empera tu re  behind the front,  and the electrons lead the front by a distance of the o rde r  of the Debye radius d, 

d N Vo/(Oo = (C/~o)(Vo/C), Vo ~ V ~ ;  

even for  single ionization, ca 0 cor responds  to the ul traviolet  region so that d < 10 -5 cm =0.1 #. Ionization by 
e lec t ron col l is ion can be roughly considered as a col l is ion between heated and atomic e lect rons .  Exchange 
of energy between par t ic les  of equal m a s s  occurs  rapidly in contras t  to the exchange between e lect rons  and 
ions. With an  ionization c r o s s  sect ion of 10 -16 cm 2 at the maximum [9], the t ime is short .  Note that all ca lcu-  
lations must  be ca r r i ed  out r igorous ly  for  condensed media, which is not a s imple p rob lem because of the 
specific p roper t i e s  of different ma te r i a l s  [9, 13]. We est imate the p lasma conductivity and the thickness of 
the skin l ayer .  For  a completely  ionized gas,  
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For  a hydrogen p lasma (z = 1) at T = 1.4 keV, the conductivity is c lose  to the conductivity of copper  [1]. 
For  an incompletely ionized gas,  it is a lso neces sa ry  to cons ider  the loss of directed velocity for  the free 
electrons during coll is ions with bound e lect rons  (we neglect this situation). For  an incompletely ionized gas 
z 2 ~I n ~T, so that a ~T when there  is a change in t empera tu re  and simultaneous change in ionization. The 
depth s of the skin l ayer  is determined by the conductivity a and the signal frequency:  s ~ l / q ~ ,  s ~ l /q~ ,  
where f ~l/Trr fo r  a pulse and 1" is the pulse length. For  copper  at f=100 MHz, s -~6 ~, the field is ~e - x / s ,  
and the heat re lease ,  which is quadratic with respec t  to the field, occurs  mainly at a depth s /2  ~3-4 p. For  
example, if T = 1.4 keV, Na or  Mg will be completely ionized and the conductivity will be poore r  than in copper 
by somewhat more  than an o rde r  of magnitude (s ~18 #,  s /2  ~9 ~). For  a t empera tu re  T = 140 eV, the drop in 
conductivity, according to Eq. (5), amounts to yet  another  o rder  of magnitude so that s /2  ~30 #. Since the 
t empera tu re  and conductivity are  smal l  at the leading edge of the ionization wave, the values given above must  
be increased somewhat.  

Thus, as with uhf heating [4], the width of the ionization front is mainly determined by the thickness of 
the skin layer .  Because of high p lasma conductivity, the res is tance  of the sample is small  (fractions of an 
ohm), } =H/E>> 1 near  the sample,  and a broadb~_nd res is tance  t r an s fo rmer  is necessa ry  for matching the 
target  to the t r ansmis s ion  line [2, 3]. Breakdown fields for polymers  at pulse lengths of 5-100 nsec are  107 
V / c m  [14, 15]. A r igorous  theory of pulse breakdown of die lectr ics  does not exist for  po lymers  [16, 17], a 
s trong increase  in e lec t r ica l  stability for very  short  pulses is observed in gases [18, 19], but there  a re  no 
rel iable data for  d ie lec t r ics .  We therefore  take the field value E = 107 V/cm.  In the prac t ica l  sys tem of units, 
we have for  the energy flux 

~ [EH] = (~E'~ = ]/-~0--~0 = 377P. 

When } = 30 and ~ = 4, we find S = 2.1013 W/era 2. 

For an ionization wave to exist, it is necessa ry  that its velocity exceed the velocity of the breakdown 
wave; this condition is not the same as the condition for  absence of a breakdown. In a ease  where the maxi-  
mum field exceeds the value of the breakdown field by a factor  of three,  we a r r ive  at a flux value S ~1014W/ 
c m  2. 

What has been said indicates that high t empera tu res  and p r e s s u r e s  with high heating efficiency can be 
obtained in ionization waves in condensed media excited by a video pulse; this is of in teres t  in the physics  of 
high energy densities [12]. 

The authors thank S. A. Reg i re r  and A. A. Barmin for their  interest  and valuable advice.  
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ELECTRON TEMPERATURE DIFFERENCE IN 

OF AN MHD ACCELERATOR CHANNEL 

FLOW CORE 

V .  I .  B e l y k h  UDC 537,529 

The opera t ing c h a r a c t e r i s t i c s  of MHD devices  depend on the e lec t r i ca l  conductivity of the p l a s m a .  Ac-  
cordingly,  it is impor tan t  to know how it can  be inc reased ,  taking into account  the des ign p rope r t i e s  of the 
m a t e r i a l s  used.  

Genera l ly  speaking,  as  a r e su l t  of the in te rac t ion  of the p l a s m a  with the e lec t r ic  field the e lec t ron  t e m -  
p e r a t u r e  is dif ferent  f r o m  that  of the ions and neut ra l s ,  and since the e lec t r i ca l  conductivity of the p l a s m a  
depends on the e l ec t ron  t e m p e r a t u r e ,  the quest ion of nonequi l ibr ium ionizat ion has a roused  cons iderab le  in-  
t e r e s t .  In [1:3] an  a t tempt  was made  to demons t ra t e ,  theore t i ca l ly  and exper imenta l ly ,  the p r e s e n c e  of non- 
equi l ibr ium ionizat ion in an argon p l a s m a  seeded  with po tass ium.  The nonequil ibr ium ionization of noble gases  
seeded with alkali  me ta l  was also inves t igated in [4, 5]. 

In [6, 7] the  effect  of an e levated  e l ec t ron  t e m p e r a t u r e  nea r  the su r face  of an insula tor  wall  was inves -  
t igated on the a s sumpt ion  of equi l ibr ium e l ec t ron  concent ra t ion  a c r o s s  the boundary l aye r .  The equi l ibr ium 
concent ra t ion  was de te rmined  f r o m  the Saha equation. A s i m i l a r  a s sumpt ion  can  be made  in re la t ion  to the 
flow co re ,  i .e . ,  in the undisturbed reg ion  of the p l a s m a .  

We have invest igated the undis turbed reg ion  of the p l a s m a  with al lowance fo r  diffusion and ionization of 
the charged  pa r t i c l e s  at  var ious  concent ra t ions  of the p o t a s s i u m  seed in ni t rogen.  We cons idered  a dense 
p l a s m a  at  a p r e s s u r e  p ~0.1 tech.  a tm,  so that  the ion t e m p e r a t u r e  and the t e m p e r a t u r e  of the bas ic  gas  may  
be taken to be  the  s a m e .  

The following a s sumpt ions  a r e  made:  1) The p l a s m a  is quas ineutra l ;  2) all  the p l a s m a  components ,  
except  fo r  the e lec t rons ,  a r e  in t h e r m a l  equi l ibr ium; 3) t h e r e  is no magnet ic  field; the e lec t ron  t e m p e r a t u r e  
depends on the e lec t r ic  field s t rength  and the c u r r e n t  densi ty .  

Under  these  assumpt ions ,  the e lec t r i c  field s t rength ,  the pa r t i c l e  f luxes,  and the e lec t ron  t e m p e r a t u r e  
a r e  re la ted  as  follows: 

] = (D J %  + D:/~)G~ G = - -]eTJDe,  ]i == - - ]JceDi /qDe ,  ] ---- is - -  ie, (1) 
% = ~ -t- c%C"-/v, 

where m e, ~i '  Je, Ji, De, Di are the temperatures, fluxes, and diffusion coefficients of the electrons and ions, 
respectively, 

_t/2 (m ~,/2 _,/2 
De ~ ~e " �9 ~i , 

NsQes ~ NsQis 

and G, a0, and u a r e  the e lec t r i c  field s t rength,  tlae e l ec t r i ca l  conductivity,  and the e lec t ron  col l i s ion f requency 

[8]. 

We will use  the co l l i s ion  c r o s s  sec t ions  obtained for  ni t rogen seeded with po t a s s ium [9]. The charged  
pa r t i c l e  concen t ra t ion  is found f rom the Saha equat ion using the e lec t ron  t e m p e r a t u r e :  
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